Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 600
Filter
1.
Int J Food Microbiol ; 418: 110741, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38733636

ABSTRACT

Plant volatile organic compounds (PVOCs) have gained increasing attention for their role in preventing fungal spoilage and insect contamination in postharvest agro-products owing to their effectiveness and sustainability. In this study, the essential oil was extracted from fresh M. alternifolia (tea tree) leaves, and the fumigation vapor of tea tree oil (TTO) completely inhibited the growth of Aspergillus flavus on agar plates at a concentration of 1.714 µL/mL. Terpinen-4-ol was identified as the major component (40.76 %) of TTO volatiles analyzed using headspace gas chromatography-mass spectrometry. Terpinen-4-ol vapor completely inhibited the A. flavus growth on agar plates and 20 % moisture wheat grain at 0.556 and 1.579 µL/mL, respectively, indicating that terpinen-4-ol serves as the main antifungal constituent in TTO volatiles. The minimum inhibitory concentration of terpinen-4-ol in liquid-contact culture was 1.6 µL/mL. Terpinen-4-ol treatment caused depressed, wrinkled, and punctured mycelial morphology and destroyed the plasma membrane integrity of A. flavus. Metabolomics analysis identified significant alterations in 93 metabolites, with 79 upregulated and 14 downregulated in A. flavus mycelia exposed to 1.6 µL/mL terpinen-4-ol for 6 h, involved in multiple cellular processes including cell membrane permeability and integrity, the ABC transport system, pentose phosphate pathway, and the tricarboxylic acid cycle. Biochemical analysis and 2,7-dichlorofluorescein diacetate staining showed that terpinen-4-ol induced oxidative stress and mitochondrial dysfunction in A. flavus mycelia. This study provides new insights into the antifungal effects of the main TTO volatile compounds terpinen-4-ol on the growth of A. flavus.

2.
Theranostics ; 14(6): 2544-2559, 2024.
Article in English | MEDLINE | ID: mdl-38646641

ABSTRACT

Background: Mechanical forces are indispensable for bone healing, disruption of which is recognized as a contributing cause to nonunion or delayed union. However, the underlying mechanism of mechanical regulation of fracture healing is elusive. Methods: We used the lineage-tracing mouse model, conditional knockout depletion mouse model, hindlimb unloading model and single-cell RNA sequencing to analyze the crucial roles of mechanosensitive protein polycystin-1 (PC1, Pkd1) promotes periosteal stem/progenitor cells (PSPCs) osteochondral differentiation in fracture healing. Results: Our results showed that cathepsin (Ctsk)-positive PSPCs are fracture-responsive and mechanosensitive and can differentiate into osteoblasts and chondrocytes during fracture repair. We found that polycystin-1 declines markedly in PSPCs with mechanical unloading while increasing in response to mechanical stimulus. Mice with conditional depletion of Pkd1 in Ctsk+ PSPCs show impaired osteochondrogenesis, reduced cortical bone formation, delayed fracture healing, and diminished responsiveness to mechanical unloading. Mechanistically, PC1 facilitates nuclear translocation of transcriptional coactivator TAZ via PC1 C-terminal tail cleavage, enhancing osteochondral differentiation potential of PSPCs. Pharmacological intervention of the PC1-TAZ axis and promotion of TAZ nuclear translocation using Zinc01442821 enhances fracture healing and alleviates delayed union or nonunion induced by mechanical unloading. Conclusion: Our study reveals that Ctsk+ PSPCs within the callus can sense mechanical forces through the PC1-TAZ axis, targeting which represents great therapeutic potential for delayed fracture union or nonunion.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Differentiation , Chondrocytes , Fracture Healing , Osteogenesis , Stem Cells , TRPP Cation Channels , Animals , Fracture Healing/physiology , Mice , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , Chondrocytes/metabolism , Stem Cells/metabolism , Osteogenesis/physiology , Mice, Knockout , Chondrogenesis/physiology , Periosteum/metabolism , Osteoblasts/metabolism , Osteoblasts/physiology , Disease Models, Animal , Male
3.
Food Microbiol ; 121: 104524, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637086

ABSTRACT

Aspergillus flavus colonization on agricultural products during preharvest and postharvest results in tremendous economic losses. Inspired by the synergistic antifungal effects of essential oils, the aims of this study were to explore the mechanism of combined cinnamaldehyde and nonanal (SCAN) against A. flavus and to evaluate the antifungal activity of SCAN loading into diatomite (DM). Shriveled mycelia were observed by scanning electron microscopy, especially in the SCAN treatment group. Calcofluor white staining, transmission electron microscopy, dichloro-dihydro-fluorescein diacetate staining and the inhibition of key enzymes in tricarboxylic acid cycle indicated that the antifungal mechanism of SCAN against A. flavus was related to the cell wall damage, reactive oxygen species accumulation and energy metabolism interruption. RNA sequencing revealed that some genes involved in antioxidation were upregulated, whereas genes responsible for cell wall biosynthesis, oxidative stress, cell cycle and spore development were significantly downregulated, supporting the occurrence of cellular apoptosis. In addition, compared with the control group, conidia production in 1.5 mg/mL DM/cinnamaldehyde, DM/nonanal and DM/SCAN groups were decreased by 27.16%, 48.22% and 76.66%, respectively, and the aflatoxin B1 (AFB1) contents decreased by 2.00%, 73.02% and 84.15%, respectively. These finding suggest that DM/SCAN complex has potential uses in food preservation.


Subject(s)
Acrolein/analogs & derivatives , Aldehydes , Antifungal Agents , Aspergillus flavus , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Aflatoxin B1/metabolism , Food Preservation
4.
Microbiol Res ; 283: 127710, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593581

ABSTRACT

Aflatoxin B1 (AFB1), a highly toxic secondary metabolite produced by Aspergillus flavus, poses a severe threat to agricultural production, food safety and human health. The methylation of mRNA m6A has been identified as a regulator of both the growth and AFB1 production of A. flavus. However, its intracellular occurrence and function needs to be elucidated. Here, we identified and characterized a m6A methyltransferase, AflIme4, in A. flavus. The enzyme was localized in the cytoplasm, and knockout of AflIme4 significantly reduced the methylation modification level of mRNA. Compared with the control strains, ΔAflIme4 exhibited diminished growth, conidial formation, mycelial hydrophobicity, sclerotium yield, pathogenicity and increased sensitivity to CR, SDS, NaCl and H2O2. Notably, AFB1 production was markedly inhibited in the A. flavus ΔAflIme4 strain. RNA-Seq coupled with RT-qPCR validation showed that the transcriptional levels of genes involved in the AFB1 biosynthesis pathway including aflA, aflG, aflH, aflK, aflL, aflO, aflS, aflV and aflY were significantly upregulated. Methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) analysis demonstrated a significant increase in m6A methylation modification levels of these pathway-specific genes, concomitant with a decrease in mRNA stability. These results suggest that AflIme4 attenuates the mRNA stability of genes in AFB1 biosynthesis by enhancing their mRNA m6A methylation modification, leading to impaired AFB1 biosynthesis. Our study identifies a novel m6A methyltransferase AflIme4 and highlights it as a potential target to control A. flavus growth, development and aflatoxin pollution.


Subject(s)
Aflatoxins , Aspergillus flavus , Humans , Aspergillus flavus/genetics , Aflatoxin B1/genetics , Aflatoxin B1/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Hydrogen Peroxide/metabolism , RNA, Messenger/metabolism , Aflatoxins/genetics , Aflatoxins/metabolism
5.
J Clin Med ; 13(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673492

ABSTRACT

Background/Objectives: This one-year prospective observational study, conducted at two centers, aimed to report the natural history of retinal sensitivity (RS) loss in diabetic macular ischemia (DMI). Methods: Patients with stable-treated proliferative diabetic retinopathy (PDR) were recruited if there was evidence of DMI on optical coherence tomography angiography, defined as a foveal avascular zone ≥ 0.5 mm2 or parafoveal capillary dropout ≥ 1 quadrant. The minimal visual acuity required for performing microperimetry (MP) was ≥54 Early Treatment Diabetic Retinopathy Study letters (Snellen equivalent 20/80). The overall RS (oRS) and pointwise sensitivity (PWS) within the 3 × 3 mm macula were assessed at baseline and twelve months. A value <25 decibels (dB) was defined as impaired RS, and a decrease of 2 and 7 dB was regarded as mild and severe loss, respectively. Results: A total of 88 patients (97 eyes) were included. No statistically significant MP changes were detected at one year. However, 10% of the cohort lost oRS ≥ 2 dB, and 73% lost ≥2 dB PWS in ≥5 loci, whereas 1% lost oRS ≥ 7 dB, and 4% lost ≥7 dB PWS in ≥5 loci. The foveola and temporal parafovea were the most vulnerable to severe RS loss. Compared to their counterpart, eyes with baseline oRS ≥ 25 dB had significantly more RS loss in the macula and superior parafovea (55% versus 32% and 53% versus 28%, both p = 0.01). Conclusions: Rather than oRS loss, ≥2 dB loss in PWS in ≥5 loci is a more feasible outcome measure for clinical trials in DMI.

6.
J Environ Manage ; 359: 120989, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678906

ABSTRACT

The efficient utilization of food waste (FW) resources through Food Waste Valorization (FWV) has received increasing attention in recent years. Various decision-making studies have been undertaken to facilitate FWV implementation, such as the studies on decision-making framework and FWV technology assessment. Food waste hierarchy is a widely discussed framework in FW management, but it was found too simplified and does not always contribute positively to environmental sustainability. Moreover, decision-making studies in FWV often focus on specific aspects of the food system and employ distinctive decision-making approaches, making it difficult to compare the results from different studies. Therefore, our literature review is conducted to provide a comprehensive understanding of FWV decision-making. This study identifies what decisions are needed, and three levels of decisions are revealed: system-level, FW stream-level, and FWV option-level. The assessment approaches and criteria used to support decision-making in FWV are also collected and analyzed. Building upon these findings, an hourglass model is synthesized to provide a holistic illustration of decision-making in FWV. This study untangles the complexities of FWV decision-making and sheds light on the limitations of current studies. We anticipate this study will make more people realize that FWV is a multidisciplinary issue and requires the collective participation of researchers, practitioners, policymakers, and consumers. Such collective engagement is essential to effectively address practical challenges and propel the transition of the current food system toward a more resource-efficient paradigm.

7.
Article in English | MEDLINE | ID: mdl-38506445

ABSTRACT

OBJECTIVE: We aimed to describe the clinical characteristics of a large cohort of patients diagnosed with tumor-induced osteomalacia (TIO), with a focus on patients with non-localizing and malignant TIO. METHODS: This is a retrospective cohort of TIO patients in an academic medical center, diagnosed between January 1998 to May 2023. We described their demographics, biochemistries, tumor features, localization, treatment and complications. RESULTS: Of 68 patients diagnosed with TIO, 49 (72%) were localizing and 5 (7.4%) were malignant. Of 50 patients who attempted localizing procedures, 29 (58%) achieved cure. 20 (40%) had persistent disease due to wrong tumor targeted, or refractory or recurrent tumors, despite up to 6 procedural attempts. There was no difference in demographics, phosphorus or baseline fibroblast growth factor-23 (FGF23) levels between localizing versus non-localizing groups, and malignant versus non-malignant groups. Lower extremity was the commonest site of localization (37%), with 47% in bone and 53% in soft tissue. 60% of malignant cases were located in the trunk. Tumor size correlated with peak FGF23 (R=0.566, p<0.001) but was not associated with malignancy risk (p=0.479). A cut-off FGF23 of >20 times upper limit of normal in the presence of normal renal function (p=0.025), and recurrence after initial cure (p=0.013) were factors significantly associated with malignancy. The non-localizing group had lower survival than localizing group (p=0.0097). CONCLUSIONS: TIO is a condition with significant morbidity. Very high FGF23 level and disease recurrence are associated with malignant disease. Reasons behind the observation of higher mortality in non-localizing TIO should be further explored.

8.
Phytochemistry ; 220: 114011, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367793

ABSTRACT

Chemical investigation of the culture extract of an endophyte Xylaria curta YSJ-5 from Alpinia zerumbet (Pers.) Burtt. et Smith resulted in the isolation of eight previously undescribed compounds including five eremophilane sesquiterpenes xylarcurenes A-E, one norsesquiterpene xylarcurene F, and two α-pyrone derivatives xylarpyrones A-B together with eight known related derivatives. Their chemical structures were extensively established based on the 1D- and 2D-NMR spectroscopic analysis, modified Mosher's method, electronic circular dichroism calculations, single-crystal X-ray diffraction experiments, and the comparison with previous literature data. All these compounds were tested for in vitro cytotoxic, anti-inflammatory, α-glucosidase inhibitory, and antibacterial activities. As a result, 6-pentyl-4-methoxy-pyran-2-one was disclosed to display significant antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus with minimal inhibitory concentration value of 6.3 µg/mL.


Subject(s)
Ascomycota , Methicillin-Resistant Staphylococcus aureus , Sesquiterpenes , Pyrones/chemistry , Molecular Structure , Sesquiterpenes/chemistry , Anti-Bacterial Agents/chemistry
9.
Heliyon ; 10(4): e24644, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38390059

ABSTRACT

Ethnopharmacological relevance: Astragalus polysaccharide (APS), the most biologically active ingredient of Astragali Radix, is used to treat diabetes mellitus (DM)-related chronic wounds in traditional Chinese medicine for several decades. This herb possesses an anti-inflammatory effect. Our study proved that APS can reduce excessive inflammation at the late phase of wound-healing in diabetic ulcers. Aim of the study: To clarify the molecular mechanism of APS in promoting wound-healing via reducing excessive inflammation in diabetic ulcers during the late stages of wound-healing. Methods and materials: The rat model of the diabetic ulcers was established via intraperitoneal injection of streptozocin (60 mg/kg). We detected the regulation of APS on diabetic ulcers by measuring wound-healing rates. Bioinformatics was used to predict the target genes of APS, and autodocking was used to predict the combination of APS and target genes. Immunohistochemistry, Enzyme-linked immunosorbent assay, Western blot, immunofluorescence staining, flow cytometry, and flow cytometric sorting were investigated. Results: The results demonstrated that APS promoted wound-healing and inhibited excessive inflammation at the late phase of wound-healing in diabetic rats. Mechanistic findings showed that APS promoted the expression of ß-catenin and Rspo3 while inhibiting the expression of NF-KB and GSK-3ß, which leads to the transformation of M1-type macrophages into M2-type macrophages and thus reducing excessive inflammation at the late phase of wound-healing in diabetic ulcers. Conclusion: We found an interesting finding that APS promoted the polarization of macrophages towards M2-type through the ß-catenin/NF-κB axis to reduce excessive inflammation at the late phase of wound-healing. Therefore, APS may be a promising drug for treating diabetic ulcers in clinic.

10.
Korean J Radiol ; 25(3): 243-256, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38413109

ABSTRACT

OBJECTIVE: We aimed to investigate whether 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (2-[18F]FDG PET/CT) can aid in evaluating the risk of malignancy in ampullary tumors detected by endoscopy. MATERIALS AND METHODS: This single-center retrospective cohort study analyzed 155 patients (79 male, 76 female; mean age, 65.7 ± 12.7 years) receiving 2-[18F]FDG PET/CT for endoscopy-detected ampullary tumors 5-87 days (median, 7 days) after the diagnostic endoscopy between June 2007 and December 2020. The final diagnosis was made based on histopathological findings. The PET imaging parameters were compared with clinical data and endoscopic features. A model to predict the risk of malignancy, based on PET, endoscopy, and clinical findings, was generated and validated using multivariable logistic regression analysis and an additional bootstrapping method. The final model was compared with standard endoscopy for the diagnosis of ampullary cancer using the DeLong test. RESULTS: The mean tumor size was 17.1 ± 7.7 mm. Sixty-four (41.3%) tumors were benign, and 91 (58.7%) were malignant. Univariable analysis found that ampullary neoplasms with a blood-pool corrected peak standardized uptake value in early-phase scan (SUVe) ≥ 1.7 were more likely to be malignant (odds ratio [OR], 16.06; 95% confidence interval [CI], 7.13-36.18; P < 0.001). Multivariable analysis identified the presence of jaundice (adjusted OR [aOR], 4.89; 95% CI, 1.80-13.33; P = 0.002), malignant traits in endoscopy (aOR, 6.80; 95% CI, 2.41-19.20; P < 0.001), SUVe ≥ 1.7 in PET (aOR, 5.43; 95% CI, 2.00-14.72; P < 0.001), and PET-detected nodal disease (aOR, 5.03; 95% CI, 1.16-21.86; P = 0.041) as independent predictors of malignancy. The model combining these four factors predicted ampullary cancers better than endoscopic diagnosis alone (area under the curve [AUC] and 95% CI: 0.925 [0.874-0.956] vs. 0.815 [0.732-0.873], P < 0.001). The model demonstrated an AUC of 0.921 (95% CI, 0.816-0.967) in candidates for endoscopic papillectomy. CONCLUSION: Adding 2-[18F]FDG PET/CT to endoscopy can improve the diagnosis of ampullary cancer and may help refine therapeutic decision-making, particularly when contemplating endoscopic papillectomy.


Subject(s)
Ampulla of Vater , Common Bile Duct Neoplasms , Humans , Male , Female , Middle Aged , Aged , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Retrospective Studies , Ampulla of Vater/diagnostic imaging , Tomography, X-Ray Computed/methods , Common Bile Duct Neoplasms/diagnostic imaging , Positron-Emission Tomography , Endoscopy
11.
Diagnostics (Basel) ; 14(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38337841

ABSTRACT

Diabetic retinopathy (DR) is the most common microvascular complication of diabetes mellitus, leading to visual impairment if left untreated. This review discusses the use of optical coherence tomography angiography (OCTA) as a diagnostic tool for the early detection and management of DR. OCTA is a fast, non-invasive, non-contact test that enables the detailed visualisation of the macular microvasculature in different plexuses. OCTA offers several advantages over fundus fluorescein angiography (FFA), notably offering quantitative data. OCTA is not without limitations, including the requirement for careful interpretation of artefacts and the limited region of interest that can be captured currently. We explore how OCTA has been instrumental in detecting early microvascular changes that precede clinical signs of DR. We also discuss the application of OCTA in the diagnosis and management of various stages of DR, including non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), diabetic macular oedema (DMO), diabetic macular ischaemia (DMI), and pre-diabetes. Finally, we discuss the future role of OCTA and how it may be used to enhance the clinical outcomes of DR.

12.
Bone Res ; 12(1): 6, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38267422

ABSTRACT

Skeletal stem/progenitor cell (SSPC) senescence is a major cause of decreased bone regenerative potential with aging, but the causes of SSPC senescence remain unclear. In this study, we revealed that macrophages in calluses secrete prosenescent factors, including grancalcin (GCA), during aging, which triggers SSPC senescence and impairs fracture healing. Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair. Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence. Mechanistically, GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction, resulting in cellular senescence. Depletion of Plxnb2 in SSPCs impaired fracture healing. Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice. Thus, our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence, and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals.


Subject(s)
Callosities , Fractures, Bone , Aged , Humans , Animals , Mice , Fracture Healing , Cellular Senescence , Aging , Macrophages , Stem Cells
13.
J Food Sci ; 89(3): 1804-1813, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38258895

ABSTRACT

During the early months of life, infant formula plays a crucial role as a primary source of both food and essential nutrients for infants, serving as a replacement for or supplement to breast milk. However, nonessential metals in infant formulas are a concern because infants are highly vulnerable to chemical exposure. The aim of this study was to investigate infant exposure to nonessential metals in infant formula products in Taiwan and assess the associated health risks. In this study, concentrations of arsenic (As), barium (Ba), cadmium (Cd), manganese (Mn), lead (Pb), and vanadium (V) in 45 formula products for 0-1-year-old infants were determined by inductively coupled plasma mass spectrometry. The mean As, Ba, Cd, Mn, Pb, and V concentrations were 6.42, 280, 3.72, 1425, 20.4, and 21.9 µg/kg, respectively. According to our probabilistic simulation of the estimated daily intake of metals, the proportion of hazard quotients exceeding one was 7.69% for As and 3.29% for Mn, and that of hazard index (HI) values exceeding 1 was >17% for metals. Arsenic had the largest HI contribution (46.9%), followed by Mn (22.3%) and Pb (12.7%). The nonessential metals content in infant formula raises potential noncarcinogenic health concerns for infants in Taiwan. Therefore, regulations for nonessential metals must be imposed on related food products in Taiwan, with a particular focus on As and Mn.


Subject(s)
Arsenic , Metals, Heavy , Infant , Female , Humans , Infant, Newborn , Infant Formula/chemistry , Cadmium/analysis , Arsenic/analysis , Taiwan , Lead/analysis , Milk, Human/chemistry , Manganese/analysis , Risk Assessment/methods , Metals, Heavy/analysis , Environmental Monitoring/methods
14.
J Exp Clin Cancer Res ; 43(1): 3, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163876

ABSTRACT

BACKGROUND: Lung cancer is a malignant tumor with the highest mortality worldwide. Abnormalities in the ubiquitin proteasome system are considered to be contributed to lung cancer progression with deleterious effects. DDB1 and CUL4 associated factor 13 (DCAF13) is a substrate receptor of the E3 ubiquitin ligase CRL4, but its role in lung cancer remains unknown. In this study, we aimed to investigate the regulatory mechanisms of DCAF13 in lung adenocarcinoma (LUAD). METHODS: So as to investigate the effect of DCAF13 on lung adenocarcinoma cell function using in vivo and in vitro. Mechanistically, we have identified the downstream targets of DCAF13 by using RNA-sequencing, as well as ubiquitination assays, co-immunoprecipitation, immunofluorescence, immunohistochemistry and chromatin immunoprecipitation - qPCR experiments. RESULTS: Our findings reveal that DCAF13 is a carcinogenic factor in LUAD, as it is highly expressed and negatively correlated with clinical outcomes in LUAD patients. Through RNA-sequencing, it has been shown that DCAF13 negatively regulates the p53 signaling pathway and inhibits p53 downstream targets including p21, BAX, FAS, and PIDD1. We also demonstrate that DCAF13 can bind to p53 protein, leading to K48-linked ubiquitination and degradation of p53. Functionally, we have shown that DCAF13 knockdown inhibits cell proliferation and migration. Our results highlight the significant role of DCAF13 in promoting LUAD progression by inhibiting p53 protein stabilization and the p53 signaling pathway. Furthermore, our findings suggest that high DCAF13 expression is a poor prognostic indicator in LUAD, and DCAF13 may be a potential therapeutic target for treating with this aggressive cancer. CONCLUSIONS: The DCAF13 as a novel negative regulator of p53 to promote LUAD progression via facilitating p53 ubiquitination and degradation, suggesting that DCAF13 might be a novel biomarker and therapeutical target for LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Tumor Suppressor Protein p53/genetics , Factor XIII , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Ubiquitination , Cell Proliferation , Signal Transduction , RNA , RNA-Binding Proteins
15.
Diagnostics (Basel) ; 14(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38248010

ABSTRACT

Lumbar disc bulging or herniation (LDBH) is one of the major causes of spinal stenosis and related nerve compression, and its severity is the major determinant for spine surgery. MRI of the spine is the most important diagnostic tool for evaluating the need for surgical intervention in patients with LDBH. However, MRI utilization is limited by its low accessibility. Spinal X-rays can rapidly provide information on the bony structure of the patient. Our study aimed to identify the factors associated with LDBH, including disc height, and establish a clinical diagnostic tool to support its diagnosis based on lumbar X-ray findings. In this study, a total of 458 patients were used for analysis and 13 clinical and imaging variables were collected. Five machine-learning (ML) methods, including LASSO regression, MARS, decision tree, random forest, and extreme gradient boosting, were applied and integrated to identify important variables for predicting LDBH from lumbar spine X-rays. The results showed L4-5 posterior disc height, age, and L1-2 anterior disc height to be the top predictors, and a decision tree algorithm was constructed to support clinical decision-making. Our study highlights the potential of ML-based decision tools for surgeons and emphasizes the importance of L1-2 disc height in relation to LDBH. Future research will expand on these findings to develop a more comprehensive decision-supporting model.

16.
Appl Microbiol Biotechnol ; 108(1): 134, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38229304

ABSTRACT

Old yellow enzymes (OYEs) have been proven as powerful biocatalysts for the asymmetric reduction of activated alkenes. Fungi appear to be valuable sources of OYEs, but most of the fungal OYEs are unexplored. To expand the OYEs toolbox, a new thermophilic-like OYE (AfOYE1) was identified from Aspergillus flavus strain NRRL3357. The thermal stability analysis showed that the T1/2 of AfOYE1 was 60 °C, and it had the optimal temperature at 45 °C. Moreover, AfOYE1 exhibited high reduction activity in a wide pH range (pH 5.5-8.0). AfOYE1 could accept cyclic enones, acrylamide, nitroalkenes, and α, ß-unsaturated aldehydes as substrates and had excellent enantioselectivity toward prochiral alkenes (> 99% ee). Interestingly, an unexpected (S)-stereoselectivity bioreduction toward 2-methylcyclohexenone was observed. The further crystal structure of AfOYE1 revealed that the "cap" region from Ala132 to Thr182, the loop of Ser316 to Gly325, α short helix of Arg371 to Gln375, and the C-terminal "finger" structure endow the catalytic cavity of AfOYE1 quite deep and narrow, and flavin mononucleotide (FMN) heavily buried at the bottom of the active site tunnel. Furthermore, the catalytic mechanism of AfOYE1 was also investigated, and the results confirmed that the residues His211, His214, and Tyr216 compose its catalytic triad. This newly identified thermophilic-like OYE would thus be valuable for asymmetric alkene hydrogenation in industrial processes. KEY POINTS: A new thermophilic-like OYE AfOYE1 was identified from Aspergillus flavus, and the T1/2 of AfOYE1 was 60 °C AfOYE1 catalyzed the reduction of 2-methylcyclohexenone with (S)-stereoselectivity The crystal structure of AfOYE1 was revealedv.


Subject(s)
Aspergillus flavus , NADPH Dehydrogenase , Aspergillus flavus/metabolism , NADPH Dehydrogenase/metabolism , Catalytic Domain , Catalysis , Alkenes
17.
Proc Natl Acad Sci U S A ; 121(5): e2318718121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38252820

ABSTRACT

Several compounds have been used for atherosclerosis treatment, including clinical trials; however, no anti-atherosclerotic drugs based on hemodynamic force-mediated atherogenesis have been discovered. Our previous studies demonstrated that "small mothers against decapentaplegic homolog 1/5" (Smad1/5) is a convergent signaling molecule for chemical [e.g., bone morphogenetic proteins (BMPs)] and mechanical (e.g., disturbed flow) stimulations and hence may serve as a promising hemodynamic-based target for anti-atherosclerosis drug development. The goal of this study was to develop a high-throughput screening (HTS) platform to identify potential compounds that can inhibit disturbed flow- and BMP-induced Smad1/5 activation and atherosclerosis. Through HTS using a Smad1/5 downstream target inhibitor of DNA binding 1 (Id-1) as a luciferase reporter, we demonstrated that KU-55933 and Apicidin suppressed Id-1 expression in AD-293 cells. KU-55933 (10 µM), Apicidin (10 µM), and the combination of half doses of each [1/2(K + A)] inhibited disturbed flow- and BMP4-induced Smad1/5 activation in human vascular endothelial cells (ECs). KU-55933, Apicidin, and 1/2(K + A) treatments caused 50.6%, 47.4%, and 73.3% inhibitions of EC proliferation induced by disturbed flow, respectively, whereas EC inflammation was only suppressed by KU-55933 and 1/2(K + A), but not Apicidin alone. Administrations of KU-55933 and 1/2(K + A) to apolipoprotein E-deficient mice inhibited Smad1/5 activation in ECs in athero-susceptible regions, thereby suppressing endothelial proliferation and inflammation, with the attenuation of atherosclerotic lesions in these mice. A unique drug screening platform has been developed to demonstrate that KU-55933 and its combination with Apicidin are promising therapeutic compounds for atherosclerosis based on hemodynamic considerations.


Subject(s)
Atherosclerosis , Endothelial Cells , Morpholines , Pyrones , Humans , Animals , Mice , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Atherosclerosis/drug therapy , Hemodynamics , Inflammation
18.
Zhongguo Gu Shang ; 37(1): 86-91, 2024 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-38286457

ABSTRACT

OBJECTIVE: To investigate the clinical effect of total hip replacement (THA) in the treatment of traumatic arthritis secondary to acetabular fracture. METHODS: From October 2019 to June 2022, 15 patients with secondary traumatic arthritis of acetabulum fracture were treated with THA. There were 8 males and 7 females, aged from 40 to 76 years old with an average of (59.20±9.46) years old. Prosthesis loosening, dislocation of hip joint, range of motion of hip joint, nerve injury and other conditions were recorded before and after surgery. Harris score, visual analogue scale (VAS) and imaging were used to evaluate hip joint function and surgical effect. RESULTS: Follow-up time ranged 6 to 39 months with an average of (18.33±9.27) months. All the 15 patients successfully completed the operation, no nerve and blood vessel injury during the operation, postoperative wound healing was stageⅠ, no infection, one case of acetabular side prosthesis loosening at half a year after operation, and recovered well after revision surgery, one case of hip dislocation was cured after open reduction treatment, no adverse consequences. Harris score at the last postoperative follow-up was (88.60±4.01) points, compared with the preoperative (47.20±11.77) points, the difference was statistically significant (P<0.05), and VAS at the lateat postoperative follow-up was 1 (1) points, compared with the preoperative 8 (2) points, the difference was statistically significant (P<0.05). At the last follow-up, the pain symptoms were relieved or disappeared, and the joint function was satisfactory. The imaging data of the latest follow-up showed joint was well pseudoradiated, no abnormal ossification occurred, and the prosthesis was not loose. CONCLUSION: THA is effective in the treatment of traumatic arthritis secondary to acetabular fracture and can effectively improve the quality of life of patients. Preoperative comprehensive evaluation and bone defect evaluation of patients, and intraoperative management of acetabulum, femur, internal fixation and bone defect are key factors for the success of surgery.


Subject(s)
Arthritis , Arthroplasty, Replacement, Hip , Hip Fractures , Hip Prosthesis , Spinal Fractures , Male , Female , Humans , Adult , Middle Aged , Aged , Arthroplasty, Replacement, Hip/methods , Prosthesis Failure , Retrospective Studies , Quality of Life , Acetabulum/surgery , Acetabulum/injuries , Hip Fractures/surgery , Spinal Fractures/surgery , Arthritis/surgery , Treatment Outcome , Follow-Up Studies
19.
Nutr Neurosci ; 27(4): 342-352, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36976719

ABSTRACT

INTRODUCTION: Insulin resistance (IR) is a feature of metabolic syndrome and plays an important role in cognitive impairment (CI). The triglyceride-glucose (TyG) index is a convenient and cost-effective surrogate for assessing IR. This study aimed to assess the association between the TyG index and CI. METHODS: This community population-based cross-sectional study used a cluster-sampling methodology. All participants underwent the education-based Mini-Mental State Examination (MMSE), and those with CI were identified using standard thresholds. The fasting blood triglyceride and glucose levels were measured in the morning, and the TyG index was calculated as ln (½ fasting triglyceride level [mg/dL] × fasting blood glucose level [mg/dL]). Multivariable logistic regression and subgroup analysis were used to assess the relationship between the TyG index and CI. RESULTS: This study included 1484 subjects, of which 93 (6.27%) met the CI criteria. Multivariable logistic regression showed that CI incidence increased by 64% per unit increase in the TyG index (odds ratio [OR] = 1.64, 95% confidence interval [CI]: 1.02-2.63, p = 0.042). CI risk was 2.64-fold higher in the highest TyG index quartile compared to the lowest TyG index quartile (OR = 2.64, 95% CI: 1.19-5.85, p = 0.016). Finally, interaction analysis showed that sex, age, hypertension, and diabetes did not significantly affect the association between the TyG index and CI. CONCLUSION: The present study suggested that an elevated TyG index was associated with a higher CI risk. Subjects with a higher TyG index should manage and treat at an early stage to alleviate the cognitive decline.


Subject(s)
Glucose , Insulin Resistance , Humans , Blood Glucose/metabolism , Cross-Sectional Studies , Risk Factors , Triglycerides , Biomarkers , China/epidemiology
20.
Int J Food Microbiol ; 410: 110514, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38070224

ABSTRACT

Plant volatile organic compounds (VOCs) with antimicrobial activity could potentially be extremely useful fumigants to prevent and control the fungal decay of agricultural products postharvest. In this study, antifungal effects of volatile compounds in essential oils extracted from Origanum vulgare L. against Aspergillus flavus growth were investigated using transcriptomic and biochemical analyses. Carvacrol was identified as the major volatile constituent of the Origanum vulgare L. essential oil, accounting for 66.01 % of the total content. The minimum inhibitory concentrations of carvacrol were 0.071 and 0.18 µL/mL in gas-phase fumigation and liquid contact, respectively. Fumigation with 0.60 µL/mL of carvacrol could completely inhibit A. flavus proliferation in wheat grains with 20 % moisture, showing its potential as a biofumigant. Scanning electron microscopy revealed that carvacrol treatment caused morphological deformation of A. flavus mycelia, and the resulting increased electrolyte leakage indicates damage to the plasma membrane. Confocal laser scanning microscopy confirmed that the carvacrol treatment caused a decrease in mitochondrial membrane potential, reactive oxygen species accumulation, and DNA damage. Transcriptome analysis revealed that differentially expressed genes were mainly associated with fatty acid degradation, autophagy, peroxisomes, the tricarboxylic acid cycle, oxidative phosphorylation, and DNA replication in A. flavus mycelia exposed to carvacrol. Biochemical analyses of hydrogen peroxide and superoxide anion content, and catalase, superoxide dismutase, and glutathione S-transferase activities showed that carvacrol induced oxidative stress in A. flavus, which agreed with the transcriptome results. In summary, this study provides an experimental basis for the use of carvacrol as a promising biofumigant for the prevention of A. flavus contamination during postharvest grain storage.


Subject(s)
Oils, Volatile , Origanum , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Aspergillus flavus , Origanum/chemistry , Triticum , Monoterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...